Physics of active jamming during collective cellular motion in a monolayer.
نویسندگان
چکیده
Although collective cell motion plays an important role, for example during wound healing, embryogenesis, or cancer progression, the fundamental rules governing this motion are still not well understood, in particular at high cell density. We study here the motion of human bronchial epithelial cells within a monolayer, over long times. We observe that, as the monolayer ages, the cells slow down monotonously, while the velocity correlation length first increases as the cells slow down but eventually decreases at the slowest motions. By comparing experiments, analytic model, and detailed particle-based simulations, we shed light on this biological amorphous solidification process, demonstrating that the observed dynamics can be explained as a consequence of the combined maturation and strengthening of cell-cell and cell-substrate adhesions. Surprisingly, the increase of cell surface density due to proliferation is only secondary in this process. This analysis is confirmed with two other cell types. The very general relations between the mean cell velocity and velocity correlation lengths, which apply for aggregates of self-propelled particles, as well as motile cells, can possibly be used to discriminate between various parameter changes in vivo, from noninvasive microscopy data.
منابع مشابه
Overcrowding drives the unjamming transition of gap-free monolayers
Collective cell motility plays central roles in various biological phenomena such as inflammatory response, wound healing, cancer metastasis and embryogenesis. These are biological demonstrations of the unjamming transition. However, contradictory to the typical density-driven jamming processes in particulate assemblies, cellular systems often get unjammed in highly packed, sometimes overcrowdi...
متن کاملAir-Fluidized Grains as a Model System: Self-Propelling and Jamming
This thesis examines two concepts -self-propelling and jamming -that have been employed to unify disparate non-equilibrium systems, in the context of a monolayer of grains fluidized by a temporally and spatially homogeneous upflow of air. The first experiment examines the single particle dynamics of airfluidized rods. For Brownian rods, equipartition of energy holds and rotational motion sets a...
متن کاملA Fuzzy logic-inspired model to simulate pedestrian dynamics in emergency and panic situations
Crowds are a quite usual experience in everyday life. They are mostly safe but, in some cases, can be dangerous. Understanding competitive egress behaviours can be helpful in avoiding tragic events: effective egress models are useful both in designing large venues and in calculating their working conditions during emergencies. The simulation of pedestrian motions within an area in the presence ...
متن کاملMechanical behaviour of motion for the two-dimensional monolayer system
In this paper we study the dynamics of the 2D-motion of a particle of monolayer. First we consider the usual physical time component and the plan manifold R2, having the polar coordinates. Then a geometric approach to nonholonomic constrained mechanical systems is applied to a problem from the two dimensional geometric dynamics of the Langmuir-Blodgett monolayer. We consider a constraint sub...
متن کاملEndocytic reawakening of motility in jammed epithelia
Dynamics of epithelial monolayers has recently been interpreted in terms of a jamming or rigidity transition. How cells control such phase transitions is, however, unknown. Here we show that RAB5A, a key endocytic protein, is sufficient to induce large-scale, coordinated motility over tens of cells, and ballistic motion in otherwise kinetically arrested monolayers. This is linked to increased t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 112 50 شماره
صفحات -
تاریخ انتشار 2015